

Particle Image Velocimetry (PIV) Experimental Analysis of a Flow Control Structure Ob Mass,

Tyler Moore, Wen Wu, and Taiho Yeom

Department of Mechanical Engineering, University of Mississippi, Oxford, USA

Energy Management Laboratory

Experimental Conditions

Motivation & Objective

Micro Airfoil Structure (MAS)

- Skin-friction drag (SFD) in turbulent boundary layers (TBLs) creates a large amount of energy loss in transportation industries.
- An implementation of a flow control scheme can reduce SFD in TBLs.
- S. L. Vellala, 2016
- A passive method of controlling TBLs is proposed, utilizing advancements in additive manufacturing technology.
- The objective of the study is to demonstrate the flow control capabilities of larger mock-up Micro Airfoil Structure (MAS).
- 3D-printed structure with two side segments and a top segment (a).
- Structure segment height, width, and thickness can be manipulated (b).
- Angle of attack (AOA) of each segment may also be manipulated ((c) & (d)).
- Standard airfoil geometries may be incorporated for each segment.

Left Segmer ✓ Sh

- Geometry Study • Flat Plate, NACA 0010, NACA 2410, NACA 6409 Angle of Attack (AOA) Study
 - •5° Diffuser, 10° Diffuser, 5° Nozzle, 10° Nozzle
- Inlet Velocity: 3.1 m/s • ΔT: 15 microseconds
- •Capture Rate: 5 Hz

Flat Plate	b) NACA 00

c) NACA 2410

d) NACA 6409

AOA Study Samples

A) 5° Diffuser B) 10° Diffuser C) 5° Nozzle D) 10° Nozzle

Particle Image Velocimetry (PIV)

- "Tracer" seed particles are introduced into the flow; in this case, olive oil droplets.
- A laser sheet illuminates the seed particles in the flow.
- Flow matches accepted log

Normalized Velocity Profile

(b)

- High-speed CCD camera takes two image "captures" concurrently with a small amount of time between the two captures (ΔT).
- The software can detect the displacement of specific particles between the two captures.
- Knowledge of particle displacement and time between captures allows for the creation of flow velocity vector fields.

A) Single Image Capture, B) Resolved Vector Field

Baseline Channel Condition

Experimental Setup

3D-Printed Wind Channel – PIV

- W = 50 mm, H = 400 mm, Lc = 3 m
- Fully developed TBL at the test section.
- Minimum inlet velocity of 3.1 m/s.
- 1000 image pairs captured for each sample post processing produced time averaged results.

Conclusions and Recommendations

- Diffuser MAS accelerated flow, while nozzle MAS decelerated flow; the inverse of initial estimations.
- Nozzle MAS impacted V velocity significantly more than diffuser MAS.
- The flat plate MAS geometry was found to perturb channel flow the least of the tested geometries.
- Further studies are required using smaller MAS samples to confirm flow control characteristics and behaviors closer to the wall.

Acknowledgment: This research has been funded by National Science Foundation under grant no. CBET-2039433, monitored by the program officer, Dr. Ronald Joslin. Acquisition of the PIV system has been funded by DURIP grant No. FA9550-20-1-0178, monitored by the program officer, Dr. Gregg Abate.