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Motivation and Objective

• Skin-friction drag (SFD) in turbulent boundary layers (TBLs) 
creates a large amount of energy loss in shipping industries. 

• An implementation of a flow control scheme can reduce SFD in 
TBLs, saving energy and cost. 

• A passive method of controlling TBLs is proposed, utilizing 
technological advancements in 3D-printing.  
• The Micro-Airfoil Structure (MAS)

• The objective of the study is to demonstrate the flow control 
capabilities of larger mock-up MAS samples, leading to 
recommendations for smaller samples in the future.  
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Background

• Existing Methods for Flow Control

• Active Flow Control
• Synthetic jets, piezo fans, etc. 

• Require sub-components and external energy to operate.

• Passive Flow Control
• Typically manipulate surface topologies (grooves, riblets, additives).

• What are the optimal surface structures to control TBLs effectively, 
reducing SFD?

• 3D-Printing technology can be utilized to create well-defined surface 
structures.
• Experimental analysis; numerical analysis counterpart in Session J08, Room 

135.
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Micro Airfoil Structure (MAS) I

• 3D-printed structure with two side 
segments and a top segment (a).

• Structure segment height, width, 
and thickness can be manipulated 
(b).

• Angle of attack (AOA) of each 
segment may also be manipulated 
((c) & (d)).

• Standard airfoil geometries may be 
incorporated for each segment. 
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Schematic of MAS Sample 



Micro Airfoil Structure (MAS) II
• AOA manipulation creates three 

distinct sample variants:
• Diffuser (MAS – 1)

• Default (MAS – 2) 

• Nozzle (MAS – 3) 

• Desired control outputs include flow 
acceleration, deceleration, and vortex 
generation. 

• 3D-Printing technology allows for a 
minimum MAS height of around a few 
hundred micrometers. 

• Larger sample height/width of 15 mm 
selected for this study, thickness of 1.5 
mm.
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MAS Working Principles and Variants



Experimental Setup – Wind Channel 
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• Wind channel created using custom 
3D-printed sections.
• W = 50 mm

• H = 400 mm

• Lc = 3 m

• Test section approximately 2.4 m 
from inlet, selected to allow for fully 
developed turbulent flow. 

• Minimum inlet velocity of 3.1 m/s.

• Turbulent boundary layer of 25 mm 
(half channel width).
• Tested MAS design height (15 mm) is  

60% of BL thickness.



Experimental Setup – PIV

• Particle Image Velocimetry (PIV)

• A double-pulse YAG Laser, high 
speed CCD camera, synchronizer, 
and olive oil droplets produced from 
a particle generator were used to 
create a 2D-PIV visualization of 
flow.

• 1000 image pairs were captured 
sequentially for each test. 

• Post-processing produced time 
averaged results. 
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Schematic of Wind Channel/PIV Setup
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Experimental Conditions I

• Wind Channel Characteristics

• Inlet Velocity: 3.1 m/s

• Reynolds Number: 7038

• PIV Characteristics

• Delta T: 15 microseconds

• Pulse Repetition Rate: 5 Hz

• Laser Power: Medium

• Geometry Study

• a) Flat Plate, b) NACA 0010, c) NACA 
2410, d) NACA 6409

• Angle of Attack (AOA) Study 

• A) 5 Diffuser, B) 10 Diffuser, C) 5
Nozzle, D) 10 Nozzle 
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a) Flat Plate

c) NACA 2410

b) NACA 0010

d) NACA 6409

Geometry Study Cross Sections

AOA Study Samples

A) 5 Diffuser  B) 10 Diffuser  C) 5



Experimental Conditions II
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• Default Channel
• Flow was found to be 

fully developed at test 
section.

• Profile matches 
accepted data using 
log law of the wall (k = 
0.4, B = 4.9).

• Characteristics
• 𝑢𝜏 = 0.2242 m/s

• 𝜏𝑤 = 0.0616 Pa

• 𝑅𝑒𝜏 = 368.11

• 𝐻 = 1.4861
Half Channel 
Velocity Contour 

Flow 



Results – Geometry Study: U Velocity
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a) Flat Plate b) NACA 0010

c) NACA 2410 d) NACA 6409

Non-Physical 
Data (PIV)Slight Flow 

Acceleration



Results – Geometry Study: V Velocity
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a) Flat Plate b) NACA 0010

c) NACA 2410 d) NACA 6409

• Notable upward flow at 
the forefront of each top 
surface. 

• A) NACA 6409, the most 
cambered geometry, 
produces the most 
upward flow. 

• B) Apparent upward flow 
is paired with less dense 
downward flow behind 
the structures. 

A B



Results – Geometry Study: Z Vorticity
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a) Flat Plate b) NACA 0010

c) NACA 2410 d) NACA 6409

• A) Paired clockwise and 
counterclockwise 
rotation.

• B) Vorticity effects 
extend farther beyond 
the NACA 0010 and 
NACA 2410 structures.

Non-Physical 
Data (PIV)

B

B

A



Results – AOA Study: U Velocity
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a) Diffuser 5

c) Nozzle 5

b) Diffuser 
10

d) Nozzle 10

Significant 
Flow 
Acceleration

Slight Flow 
Acceleration

Significant 
Flow 
Deceleration



Results – AOA Study: V Velocity
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a) Diffuser 5

c) Nozzle 5

b) Diffuser 
10

d) Nozzle 10

• A) Minimal upward flow 
in diffuser samples.

• B) Significant increase in 
upward flow for nozzle 
samples.

• C) Paired downward flow 
beyond nozzle samples 
also exaggerated.
• Mixing between turbulent 

layers.  

A

B
B

C
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a) Diffuser 5 b) Diffuser 
10

c) Nozzle 5 d) Nozzle 10

Results – AOA Study: Z Vorticity

• A) Paired 
positive/negative vortical 
structures disappear 
except for case c).

• B) Clockwise vorticity 
separates from the top of 
the 10 Nozzle surface.

B
A



Conclusions

• The flat plate MAS geometry was found to perturb channel flow the 
least of the tested geometries.

• Flat plate MAS diffuser geometries were found to accelerate flow, 
while flat plate MAS nozzle geometries were found to decelerate 
flow; the inverse of initial estimations. 

• MAS nozzle geometries impact V velocity significantly more than 
MAS diffuser geometries. 

• Further studies are required using smaller MAS samples to confirm 
flow control characteristics and behaviors closer to the wall. 

• Additionally, further visualization around the side walls may be 
required to fully characterize the effects of the MAS structures. 
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Thank you! Questions?

Graduate Student Tyler Moore, Energy Management Laboratory, 

University of Mississippi, tjmoore6@go.olemiss.edu


